Skip to main navigation menu Skip to main content Skip to site footer

A NON-LOCAL PROBLEM WITH DISCONTINUOS GLUING CONDITION FOR A LOADED WAVE-DIFFUSION EQUATION INVOLVES FRACTIONAL DERIVATIVE.

Affiliation
Alfraganus University image/svg+xml

Abstract

In this work an existence and uniqueness of solution of non-local boundary
value problem with discontinuous matching condition for the loaded parabolic-hyperbolic
equation involving the Riemann-Liouville fractional derivative have been investigated. The
uniqueness of solution is proved by the method of integral energy and the existence is proved
by the method of integral equations.

Keywords

Loaded equation, wave-diffusion equation, Riemann-Liouville fractional derivative, existence and uniqueness of solution, non-local condition, discontinuous matching condition, integral energy, integral equations..


References

  1. K. Diethelm, A.D. Freed. On the solution of nonlinear fractional order differential
  2. equations used in the modeling of viscoelasticity, in: F. Keil,W. Mackens, H. Voss, J. Werther (Eds.),
  3. Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction
  4. Engineering and Molecular Properties, Springer-Verlag, Heidelberg.(1999), pp. 217–224.
  5. [2] B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall. Fractional differentia-tion by
  6. neocortical pyramidal neurons, Nat. Neurosci. 11 (2008) 1335–1342.
  7. [3] W.G. Glockle, T.F. Nonnenmacher. A fractional calculus approach of self-similar protein
  8. dynamics, Biophys. J. 68 (1995) 46–53.
  9. [4] R. Hilfer. Applications of Fractional Calculus in Physics, World Scientific, Singapore,
  10. (2000).
  11. [5] F. Mainardi. Fractional calculus: some basic problems in continuum and statistical
  12. mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum
  13. Mechanics, Springer-Verlag, Wien.(1997), pp. 291–348.
  14. [6] J.W. Kirchner, X. Feng, C. Neal. Fractal streamchemistry and its implications for
  15. contaminant transport in catchments, Nature 403 (2000) 524–526.
  16. [7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional
  17. Differential Equations, in: North-Holland Mathematics Studies, vol. 204,
  18. Elsevier Science B.V., Amsterdam. (2006).
  19. [8] K.S. Miller, B. Ross. An Introduction to the Fractional Calculus and Differential Equations,
  20. John Wiley, New York, (1993).
  21. [9] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integral and Derivatives: Theory and
  22. Applications, Gordon and Breach, Longhorne, PA, (1993).
  23. [10] I. Podlubny. Fractional Differential Equations, Academic Press, New York, (1999).
  24. [11]. V. Lakshmikantham and A. S. Vatsala. Basic theory of fractional di®erential equations.
  25. Nonlinear Anal. 69(2008), No. 8, 2677-2682.
  26. [12]. V. Lakshmikantham and A. S. Vatsala. Theory of fractional di®erential inequalities and
  27. applications. Commun. Appl. Anal. 11(2007), No. 3-4, 395-402.
  28. [13]. A. Belarbi, M. Benchohra, A. Ouahab. Uniqueness results for fractional functional
  29. differential equations with infinite delay in Frechet spaces. Appl. Anal. 85(2006),No. 12, 1459-1470.
  30. [14]. M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab. Existence results for fractional
  31. order functional differential equations with infinite delay. J. Math. Anal.Appl. 338(2008), No. 2, 1340-
  32. 1350.
  33. [15]. I. Podlubny. Geometric and physical interpretation of fractional integration and
  34. fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc.
  35. Appl. Anal. 5(2002), No. 4, 367-386.
  36. [16].A. A. Kilbas., O. A. Repin. “An analog of the Tricomi problem for a mixed type equation
  37. with a partial fractional derivative,” Fractional Calculus & Applied Analysis. (2010) v

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.