Asosiy navigatsiya menyusiga o'tish Asosiy kontentga o'tish Sayt quyi qismiga (futer) o'tish

YUKLANGAN TO'LQIN-DIFFUZIYA TENGLAMASI UCHUN TO'XTAB YETISHTIRISH SHARTI BILAN MAHALLIY BO'LMAGAN MASALAL. KASRLI HOSILANI O'Z ICHIGA OLADI.

Tashkilot
Alfraganus Universiteti image/svg+xml

Annotatsiya

Ushbu ishda Rimann-Liuvill kasr hosilasi ishtirokidagi yuklangan
parabolik-giperbolik tenglama uchun uzlukli ulash shartli nolokal chegaraviy masala
yechimining mavjudligi va yagonaligi o‘rganildi. Yechimning yagonaligi integral energiya
usuli bilan, mavjudligi esa integral tenglamalar usuli bilan isbotlangan.

Kalit so'zlar

Yuklangan tenglama, to'lqin-diffuziya tenglamasi, Riman-Liuville kasr hosilasi, yechimning mavjudligi va yagonaligi, lokal bo'lmagan shart, uzluksiz mos kelish sharti, integral energiya, integral tenglamalar..


Adabiyotlar ro'yxati

  1. K. Diethelm, A.D. Freed. On the solution of nonlinear fractional order differential
  2. equations used in the modeling of viscoelasticity, in: F. Keil,W. Mackens, H. Voss, J. Werther (Eds.),
  3. Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction
  4. Engineering and Molecular Properties, Springer-Verlag, Heidelberg.(1999), pp. 217–224.
  5. [2] B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall. Fractional differentia-tion by
  6. neocortical pyramidal neurons, Nat. Neurosci. 11 (2008) 1335–1342.
  7. [3] W.G. Glockle, T.F. Nonnenmacher. A fractional calculus approach of self-similar protein
  8. dynamics, Biophys. J. 68 (1995) 46–53.
  9. [4] R. Hilfer. Applications of Fractional Calculus in Physics, World Scientific, Singapore,
  10. (2000).
  11. [5] F. Mainardi. Fractional calculus: some basic problems in continuum and statistical
  12. mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum
  13. Mechanics, Springer-Verlag, Wien.(1997), pp. 291–348.
  14. [6] J.W. Kirchner, X. Feng, C. Neal. Fractal streamchemistry and its implications for
  15. contaminant transport in catchments, Nature 403 (2000) 524–526.
  16. [7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional
  17. Differential Equations, in: North-Holland Mathematics Studies, vol. 204,
  18. Elsevier Science B.V., Amsterdam. (2006).
  19. [8] K.S. Miller, B. Ross. An Introduction to the Fractional Calculus and Differential Equations,
  20. John Wiley, New York, (1993).
  21. [9] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integral and Derivatives: Theory and
  22. Applications, Gordon and Breach, Longhorne, PA, (1993).
  23. [10] I. Podlubny. Fractional Differential Equations, Academic Press, New York, (1999).
  24. [11]. V. Lakshmikantham and A. S. Vatsala. Basic theory of fractional di®erential equations.
  25. Nonlinear Anal. 69(2008), No. 8, 2677-2682.
  26. [12]. V. Lakshmikantham and A. S. Vatsala. Theory of fractional di®erential inequalities and
  27. applications. Commun. Appl. Anal. 11(2007), No. 3-4, 395-402.
  28. [13]. A. Belarbi, M. Benchohra, A. Ouahab. Uniqueness results for fractional functional
  29. differential equations with infinite delay in Frechet spaces. Appl. Anal. 85(2006),No. 12, 1459-1470.
  30. [14]. M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab. Existence results for fractional
  31. order functional differential equations with infinite delay. J. Math. Anal.Appl. 338(2008), No. 2, 1340-
  32. 1350.
  33. [15]. I. Podlubny. Geometric and physical interpretation of fractional integration and
  34. fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc.
  35. Appl. Anal. 5(2002), No. 4, 367-386.
  36. [16].A. A. Kilbas., O. A. Repin. “An analog of the Tricomi problem for a mixed type equation
  37. with a partial fractional derivative,” Fractional Calculus & Applied Analysis. (2010) v

Yuklab olishlar

Yuklab olish ma’lumotlari hali mavjud emas.

O'xshash maqolalar

Ushbu maqola uchun o'xshashlik bo'yicha kengaytirilgan qidiruvni boshlash ham qilishingiz mumkin.